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Abstract The sort of approach claimed by the title of this article is realizable, at least, within
the framework of ADG where we do not assume any “spacetime” supplying the dynamics we
employ. The latter classical type of argument can naturally be included herewith along with
its concomitant impediments that are emanated therefrom and are essentially “absorbed”,
technically speaking, by the proposed mechanism. So our approach, being “manifoldless”
(thence, no smoothness, in the standard sense) does not contain any such issue, as before,
according to the very definitions, being thus “singularities”-free. As a consequence, the
equations that one would be able to formulate within the present set-up will be, by the very
essence of the matter, already the quantized ones.

Keywords Quantum relativity · Gel’fand/Yoneda transform · “Singularities” ·
Sheaf-theoretic dynamics · Dynamical relativistic localization · Yang-Mills field ·
Topos-theoretic dynamics · Topos-theoretic quantum field theory · Topological algebra
space · Topological algebra scheme

1 A-invariance

It is well understood that we can isolate/detect something, only, if this is “A-invariant”.
Here A denotes our “arithmetic” we use each time. In particular, we posit that

(1.1) a physical law is A-invariant.

See also (1.4) in the sequel. Of course, any physical law is in effect independent of us.
Therefore, it is reasonable to expect that its realization/detection should not depend on the
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“arithmetic”, we employ at each particular time to detect it. Thus, one can actually supple-
ment (1.1) saying that

(1.2)

a physical law is always A-invariant, for any A whatsoever. Yet, we can further
note that

(1.2.1)
a physical law penetrates everything since it is actually there
always, and the same.

In this context, we can also remark that the above still points out an essentially abuse of
language we usually employ any time we refer to (1.1) in the sense that,

(1.3)

it is actually we who at each particular instance concoct our “arithmetic” A, so that
the physical law at issue be “A-invariant”; hence detectable (: it is essentially only
then (cf. (1.1) that one can perceive the law the same being in effect independent
of us). Therefore, applicable then, as well; see e.g. general relativity, along with
(1.17) in the sequel.

So to say it once more, equivalently,

(1.3′)
it is we who have succeeded in getting a “functorial” way/“calculus” of expressing
what we are looking for; hence of being able to detect a physical law, something
always functorial, that is “A-invariant” for any A whatsoever (cf. thus (1.2)).

On the other hand, it is still instructive that our nowadays perception of Physis allows us to
say that

(1.4) “physical geometry” (cf. P. Bergman [1]) is the outcome of the physical laws.

See for instance A. Mallios [19, (1.1)]. Hence as a spin-off of (1.2) and (1.4) we actually
conclude that:

(1.5)

The Physis herself is A-invariant for any A whatsoever. In other words, we
might equivalently say that

(1.5.1) Nature is “functorial”,

in the way we understand it. See also (1.3) above, along with (1.8) in the sequel.
Thus, what we can further say here is that;

(1.5.2)

in view of (1.5.1) we should behave, i.e., make our calcula-
tions, accordingly, viz. in a “functorial way” as well, if we
want to detect a physical law.

Consequently,

(1.6)
we should always choose such an A that (1.5), hence, also (1.2), be true. See also
the Examples below.

In conclusion, one might further look at the preceding as
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(1.7)

another equivalent formulation of the classical “Principle of General Covariance”
(see, for instance, R. Torretti [38, p. 153]). Yet, equivalently, of the “Principle of
General Relativity” or even of the so-called “Gauge Principle” (see e.g. M. Naka-
hara [30, p. 28 and 10, respectively]).

We can thus realize here that an old axiom is now simply made, according to ADG, into a
theorem. Hence, one obtains another remarkable potential intervention/application, in effect
of the point of view of ADG on the classical perspective.

Examples 1.1 (i) Within the previous context we remark that (1.5) is actually realized by
the same operation of doing “geometry” already from its inception (: “measure”—μετρω̃

(metrō)) [Greek]). The ensuing case is still more enlightening.
(ii) For the terminology applied in the sequel we refer to A. Mallios [15, 20]: Now, by

looking at the notion of “A-connection” (←→ physical law ←→ field), ibid., see also A.
Mallios [21], we remark that; we usually apply an A-connection which is “(A-)metric in-
variant”, or else, an (A-)connection compatible with the (A-)metric employed. However
here as anywhere else, it is we again who have chosen (we should, in effect, see thus (1.6)
above), such an A-metric that the law (: A-connection) be A-invariant (true, its “curva-
ture”), therefore detectable as well. Cf. also the following.

Note 1.1 It is worth remarking here that the aforementioned choice of A depends,
as a matter of fact, on the level of our theory concerning the manner we afford
to describe Nature. Yet, this same choice of A as above makes us in effect more
sensible/“real”, effective in the way of participating Nature, see also A. Mallios
[21, (3.7)].

In toto, what we conclude is that

(1.8)
we can locate only something which is “compatible” (: “invariant”) with our own
way of “measuring” (: collecting “information” about) what we perceive/observe.

The aforesaid “compatibility” that is the “invariance of the result” we get by “measuring”
(: when, namely, following a (physical) procedure) is what we actually understand by an

(1.9) A-(co)variance

or even an

(1.10) A-(syn)variance

(I. Raptis), see also A. Mallios–I. Raptis [23]. It is the same situation that leads us on the
basis of the preceding to characterize/realize something as a particular event. Yet, the same
can of course be directly connected with the “invariance” of measurements with respect to
(inner) transformations, or even “change of coordinates” (: “representations”), thus “gauge”
of the “arithmetic” applied. In this connection see also, for instance, I.R. Shafarevich [35,
p. 160ff].

On the other hand, by further employing herewith technical language the above may still
be described as supplying an

(1.11) A-tensor
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or, even simply a “tensor”, when A is easily understood from the context. Therefore, the
same thing as in (1.11) is detectable/perceived by us. It is still worth remarking the om-
nipresence of “A” and its function throughout the preceding. Of course,

(1.12) “A” means actually we,

see also (1.3); thus,

(1.13)

it is certainly important any time we can “identify” A (: we) with what we observe
(: Physis). This especially, without any subsidiary means through which we can
perform our function (: “identification”, as for instance, by resorting as usual to the
notion of what we perceive as “spacetime”).

In this connection see also Sect. 3 below. Yet and this is also of importance, the manner we
perform the aforementioned

(1.14)

“identification” of A (: we, the observers) with Physis (: what we observe) is such
that we can also follow/participate the observed “variation” of the “eventsr”. The
latter situation is characterized as the “dynamics” of the Physis (: the world we
observe). Of course, a further immediate implementation of the previous (physi-
cal) function is the (so-called) “kinematics”. We have actually here two issues that
classically are expressed through our Calculus. See however below (: ADG).

The way the above (physical) function can be conceived, viz. our function of participat-
ing/following the (physical) “dynamics”/variation is usually achieved, technically speaking,
through our (Newtonian-Cartesian) Calculus, i.e., by the type of “differentiation” we afford,
which is still essentially referred directly to A, as well. Therefore, we can say that

(1.15)
we do, in effect, “differentiate” (either consciously, or even technically/
mathematically speaking, by concocting “Calculus”),

in order to take into account (: participate/detect) the effectuated variation of the events. In
this context, see also S. C. Chern [2] when quoting C. H. Taubes (ibid., p. 681).

In toto, we can further say that,

(1.16)

one can locate only something, which is “compatible” with our own manner of
“measuring (: detecting/collecting “information” about what we perceive). That is,
in other words, what is A-invariant in the sense we consider it in the preceding. Of
course, we still have in mind here the following technical, yet important, relation
by the very definitions,

(1.16.1) C ⊂
→ε

A,

(see also (4.16) in the sequel and subsequent comments therein).

Furthermore, what we observe/perceive is certainly expressed, in technical terms, through
our own “arithmetic” (theory) A we afford at each particular period of time/evolution of
our science. Thus the previous relation (1.16.1) can also be construed simply, just, as a
particular instance of the aforesaid evolution depending on the type of A we provide.

On the other hand, within the same vein of ideas, one may still support that

(1.17)

“relativity” in general, means the (physical) realization/effectuation of follow-
ing/detecting a “general covariance”, with respect to our own “arithmetic” A, any
time we refer to physical fields (: laws).
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Furthermore, within the same context we also remark that in the case of classical (: in terms
of CDG) General Relativity, we usually say that

(1.18)
the geometrical relations (: equations) defined on a 4-dimensional (smooth) mani-
fold X, which turn it into [what we call] a “spacetime” become “variable”.

However, meditating now within the context of ADG we realize in effect that:

(1.19)

what actually becomes “variable” (i.e., it is registered as such), is not, just, X (the
4-dimensional manifold of CDG), which, as it were, does not even exist according
to ADG, in the sense at least we mean it in the classical theory, but our “antenna”,
that is the “sheaf of coefficients” A. Thus in other words, “we”, the observers, who
also make “calculations”, yet write down equations (needing thereby a “canvas”);
something, more important, we further note here that this is made (reminding thus
us “A-invariance”) in such a manner that

(1.19.1)
the form of the latter equations is independent of the aforesaid
variation.

Therefore, in other words,

(1.20)

we are thus in a position to work,

in a so to say “functorial way”,

hence, more “physically” (see also below).

So, as a consequence of the previous remarks, we come once more to the conclusion that,

(1.21)

whenever we speak of “spacetime” we are actually referred, not to our (physical)
“environment”, but just to our technique of “measuring”, yet “calculating”, hence
writing also down “equations”, therefore at the very end, to a certain particular
A, the choice of the latter depending (as this should actually happen. . .) on the
particular case at issue.

Concerning the terminating remark of the above, see also for instance [16, 18, 22–24, 26, 31,
41]. Thus, we are led still herewith a posteriori to a known relevant utterance of A. Einstein,
see (3.12.2) below.

What we can further note, in conjunction with the preceding and based also on the very
nature of ADG and its physical applications, pertaining in particular to the so-called “singu-
larities” (see e.g. A. Mallios–E.E. Rosinger [24, 25]), is the following.

(1.22)

Our endeavour to be “A-covariant”, as above, entails also that we may/(should
actually) disregard the classical principle of uncertainty (Heisenberg) and/or prin-
ciple of complementarity (Bohr), provided we work within ADG. Indeed, “Physis
has no “singularities” ” (see A. Mallios [16, (4.4), (4.5) and (6.4), (7.9), along with
(10.10), (10.11)]).

We are going now to discuss by the following Sections the way the previous account
might still be conceived in categorical terms by isolating/illuminating the esoteric character
of the means through which we usually perceive the aforesaid “variation” (: “dynamics”) or
even “differentiation”. In this context, we may still remark here, by paraphrasing E. Galois
that,
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(1.23)

it is not always “the calculations” that are thus much of importance, as the conclu-
sions (: physical significance) which one can arrive at, when trying to understand
the context of the outcome of these calculations. This task is so better supported
as the same (calculations) are of a more “categorical” (: “geometrical”, hence,
physical) nature. See also the adage of the same Evariste Galois: “Les calculs sont
impraticables” (emphasis ours).

2 Differentiation/Dynamics

What we perceive in the previous Section as our “arithmetic” and what we usually employ
up to these days may be characterized, as an analytical procedure in the broad sense of
term yet, as an algebraic one (Warning, not “categorical/functorial algebraic”, see below),
or even a numerical/analytic one: Of course, this refers to an “arithmetic, based on the no-
tion of numbers, either in the classical sense of the latter term, viz. by considering types of
numerical algebraic systems, e.g. Euclidean (finite dimensional vector) spaces, which are
either globally (: affinely), or even locally (: “manifold”-like) conceived, or yet otherwise
via an abstract algebraic system the elements of which might thus be construed as “gen-
eralized numbers”. Now, the latter type of “numbers” are usually effectuated, through their
conversion into (abstract) functions, indeed in the broadest sense of this term, as for instance
sections, functors, and the like (this especially lately), by means of appropriate representa-
tion procedures, e.g., Gel’fand or even Yoneda transforms (see below).

The preceding can also be viewed as describing the type of analysis/arithmetic that we
actually employ, up to the present time, by majority if not even exclusively. The same sort
of analysis as above might also be characterized by simply looking at historical facts as a

(2.1) Newtonian–Cartesian arithmetic/analysis.

On the other hand, by paraphrasing for instance herewith D. R. Finkelstein (see [8, p. 155],
we can further remark that

(2.2)

the above Newtonian(-Cartesian) character of our analysis has dominated, undebat-
ably, our perception/description of the Nature, until the advent of quantum theory.
Then, things started to be changed, thus numbers appear to be more “functional”,
as e.g. first matrices (Heisenberg), then appropriate “operators” (von Neumann).

In this connection the contribution of general relativity, as it concerns the situation described
by (2.1), that is the application of classical differential geometry of smooth manifolds (CDG),
has been certainly instrumental; however, an opposite critique to the latter framework due
exactly to the appearance of quantum (field) theory was already made by Einstein himself
even in the early days of general relativity (1920), as well as, near his later days by suggest-
ing that there was to be found,

(2.3) “. . . a purely algebraic theory for the description of reality.”

[5, p. 166] (emphasis above is ours).
In this context one can still remark here that Einstein did not consider differential geom-

etry (: CDG, anyway at that time), as an end pertaining to general relativity, in the sense
that one should convert the latter theory within the framework of the former, alias in the
“geometrization” of the same theory; instead he was always looking, simply to paraphrase
here P.G. Bergman [1] at



Int J Theor Phys (2008) 47: 1929–1948 1935

(2.4) . . . fusing [any] mathematical structures to represent physical fields.

Thus Einstein was really annoyed at realizing that

(2.5)

the inherent in CDG “local analysis” (based of course by the very definitions, on
a locally euclidean/Newtonian framework) was in effect always responsible for the
appearance of the ever pestilential “singularities”, viz. infinities, “anomalies” and
the like.

Yet, this when trying to fuse/combine general relativity with quantum theory, alias to
have his equations in a “quantized form”. Thus he was led even to ask for expelling
the continuity (: limits) from the calculations; limits appear of course always in the New-
tonian/“geometrical” aspect of the derivative. Cf. here for instance A. Mallios [16], as well
as (2.3) above. In this regard, it is still worthwhile to recall at this point relevant thoughts of
Dirac [3, p. 85], Feynman [9, p. 166] and Isham [11, p. 393] (see also A. Mallios [18, (1.1′),
(1.3) and (1.4)]).

So in connection with (2.5), we also remark as a general moral of what we perceive,
through ADG, that the so-called, classically speaking (see also [4], along with [21, (3.2)]),

(2.6)

“singularities”, are just a mathematical description/ expression of the situa-
tion we are confronted with when dealing with the “quantum deep”, using
of course the classical (: Newtonian-Cartesian) A.

Now the same algebraic/numerical arithmetic could be relativized, viz. converted into a
“variational” one by simply employing herewith sheaf-theoretical methods/techniques, not
fiber bundle theory (: principal/vector bundles and the like). See, for instance, A. Mallios
[17], R. Haag [10]. So it is also recently realized that

(2.7) “. . . instead of a fiber bundle one has to work with a sheaf ”.

[10, p. 326]. Indeed, one further remarks with [10] that

(2.8)
“. . . quantities associated with a point are very singular objects [so] it is advisable
to consider neighborhoods”.

Hence, the choice of a sheaf as in (2.7). Yet, one can refer here to the already classical
considerations of R.D. Sorkin [36], in substituting the standard “pointwise/defined” (: “con-
tinuous”) topology, by a “finitary” (viz. via open coverings determined) one, as well as to
relevant applications of I. Raptis [33], along with further work of his (see e.g. [34]). In toto,
one concludes that the

(2.9)

applications of sheaf theory to confront with issues of general relativity proves to
be particularly effective, as well as, more natural, while the same framework is
also adaptable by its very nature to localization arguments; the latter are still of a
special significance, pertaining to relevant questions connected with quantum field
theory, Haag (ibid.), hence in particular with quantum relativity, as well.

Therefore, we can also sum up by saying that

(2.10)
relativize/vary fits in, most appropriately, with a suitably of course chosen sheaf–
theoretic environment,

Yet, what amounts to the same thing, in order
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(2.11)

to relativize something (: “covariantly” detecting/studying it, see also (1.17)), it
is most appropriate to find the suitable sheaf-theoretic context within which one
should reformulate the issue under discussion.

Now, as we shall presently explain, the aforementioned sheaf-theoretic context admits
further the appropriate dynamical dressing: This, together with the localization sensibil-
ity/response due to the very definitions (: sheaf theory) of the framework at issue, yields
here, the appropriate terrain pertaining to quantum relativistic problems (viz. to such ones
in quantum field theory). In this connection, see also A. Mallios [21, (2.14.1)].

All in all, by summarizing the preceding we can say that

(2.12)

up to these days, our analysis/“arithmetic” has been fundamentally spatial, viz.
always based on the notion of “space” (: euclidean-Cartesian, finite dimensional
or not). However, grounded on our nowadays experience, the same should be in
effect “algebraic”/relational (: “space” is anyway fundamentally “combination of
relations” (Leibniz), see also A. Mallios [21, 22]).

In this connection we should also remark that

(2.13)

all the aforesaid relations have been/are being already/always organized into alge-
braic structures, while the same in view of the preceding should further be appro-
priately sheafified in order to respond to quantum relativistic questions.

On the other hand, the previous situation would really fall short of the pertinent manner of
confronting with problems of quantum field theory without the aforementioned dynamical
equipment; however, this too by virtue of what has been said before has to be “space inde-
pendent”, that is again relational/categorical. Now, as we shall see presently below, this is
exactly the case when working within the framework of ADG (: Abstract (Modern) Differen-
tial Geometry; see, for instance, A. Mallios [15, 20], due exactly to the functorial character
of the same mechanism of ADG (see below).

3 Functional Dynamics

We proceed in this Section to remind briefly the way one can endow a given situation capable
of providing a relativistic (: varying/e.g. sheaf-theoretic) localization with an appropriate
“dynamical dressing”, as that one hinted at in that foregoing. Therefore, one thus would
finally afford a

(3.1) dynamical relativistic localization,

within which we would then very likely be able to formulate/solve quantum field theory
problems, hence such of quantum relativity, as well.

Thus, our aim by the following discussion is to point out, in effect to remind (a full ac-
count thereon can be found in A. Mallios, ibid.), the manner one can afford a fully-fledged
differential-geometric machinery of the sort we have it in the classical theory (CDG): how-
ever now one is based on suitably chosen hypotheses, as the case might be, pertaining to
the type of our “arithmetic” A that seems to be appropriate to our purpose: So in full con-
tradistinction with what happens classically (CDG), the aforesaid machinery does not rely
on any “space” (Euclidean or otherwise), but only on A, as it were, since it is always we
who actually measure/observe-detect, see also e.g. (1.13), (1.17). Within this same vein of
ideas we further remark that,
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(3.2)

“geometrical relations/notions”, previously associated with a preexisted (fixed)
smooth manifold (: “space-time”), are now emanatedfrom our own perception (in-
deed, how else) of “space”, that is, exactly from A. (See also (1.12), or even (1.3);
we still note that this is also the case, when applying classical reasoning (cf. for
instance analytic geometry, CDG).)

Furthermore, it is still worth remarking at this place that according to (3.2),

(3.3)

the same notions, as above, acquire now even a variational form (A is varying,
cf. (2.9)), becoming thus, at the same time, relativistic. Yet, the same framework
(: always, A) provides the appropriate “differential(-geometric) machinery” (see
below), the latter being thus varying, as well. So we are finally led to a situation as
described by (3.1).

Note that the above indicates also a rejection of the classically (CDG) fixed background
manifold structure.

We come below to a brief description of the differential-geometric mechanism that can
be established within the present context, by a suitably chosen A and without any resort to
any sort of “space”, in the standard sense of this term; before this, and in anticipation of
our subsequent discussion, it would be at least instructive to point out that a fundamental
spin-off of the aforesaid setup is the following important fact: Namely,

(3.4)

one can get within the point of view of (3.1) fundamental differential equations
of the classical theory, as for instance Einstein’s equation in vacuo as well as,
more generally Yang-Mills equations; therefore (ibid., see also e.g. A. Mallios [21,
(2.14)]), even the quantized form of the same equations too.

So we come next to remind basic ingredients of the dynamics supplied by ADG: The same
is of an entirely categorical (: functional) character, not actually requiring any supporting
space in the classical sense of the latter term, functioning on objects of a quite general nature
(see below). So we work, by assumption, within the category

(3.5) A− ModX

whose objects are A-modules on an arbitrary, in principle, topological space X, with A a
sheaf of algebras on X whose sections are unital commutative (linear associative) algebras
over the complexes C (: constant sheaf). In particular, we shall mainly concerned in the
sequel with a certain (full) subcategory of (3.5) whose objects are vector sheaves (: locally
free A-modules) on X, of finite rank, denoted by

(3.6) VectSh
f

X .

Thus, our first task is to indicate the (manner, the) dynamics (: mechanism of a differential-
geometric type), we want to define, acts on the fundamental issues, which according to our
basic assumption (: “algebra first”, see e.g. A. Mallios [21]) are used to describe everything
we are coped with; therefore, on our initial algebra (sheaf) A on X, as well. Actually, every-
thing is (locally) reduced to A, that is as we shall see according to the very definitions, on
the (local) sections of A (cf. for instance (3.10) in the sequel).

So our aim here is first to concoct an appropriate “reception-space” to accommodate
the transformed (: dynamically changed) elements/sections of A (: every element of A can
actually be effectuated through a section of A, “a sheaf is that one of the germs of its sec-
tions”), under the action of the law/process that expresses this change/variation; then also
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formally determine the aforementioned law (: “derivative”). We are thus tempted to employ
a classical device already originated with Leibniz-Grassmann-Kähler that was also “geo-
metrically” realized of course by Newton, as well. In nowadays parlance, it constitutes an
aspect of the “extension of scalars” functor when speaking algebraically-categorically. Note
that our algebra-sheaf A stands here for the “sheaf /domain of coefficients”, alias, “gener-
alized scalars”. True, the possibility of working that way is certainly secured (Kähler) for
any unital commutative algebra over the reals R or the complexes C, as before. This is also
what we actually do, in the framework of the present sheaf-theoretic setup, by appropriately
sheafified the previous procedure within the category (3.5), or in particular (3.6), by further
axiomatizing the corresponding stages of the same procedure. The latter are still motivated
by the classical theory (CDG) which is thus always incorporated in the present extended
context.

For convenience we recall the first step/hypothesis on the aforesaid axiomatization:thus
within the context of (3.5) we assume that we are given the following basic (“flat”) A-
connection

(3.7) ∂ : A −→ �1,

satisfying the usual “Leibniz conditions” of a classical derivative with �1 denoting the cor-
responding herewith A-module of our “differential 1-forms” of the classical theory. Its exis-
tence is here, for generality’s sake, axiomatically asserted while it can always be achieved,
as previously explained, by following Kähler’s device (: extension of scalars functor), being
the “universal derivative” space (see also below) associated with the “universal object” �1.
(In this context, we further note that, as a result of the aforesaid “universality” of �1, there
is a natural map between the “module of differentials” of the classical theory and that one
defined à la Kähler; this can be realized/identified by still taking, for instance, into account
the topological algebra structure of the sheaf of smooth functions in the classical set-up. In
this respect, see also e.g. relevant remarks of D. Eisenbud [6, p. 389]). Following further the
classical device (CDG), always axiomatically proceeding, concerning the individual “dif-
ferential operators”, we can arrive for suitable A to a de Rham complex, employing sheaf
cohomology whose exactness is still axiomatically assumed.

The fundamental notion of an A-connection referring to an object of (3.5), say E , is now
a functor-morphism in the category of C-vector space–sheaves on X denoted by

(3.8) C − VectShX;

that is, one has the C-linear morphism,

(3.9) D : E −→ E ⊗A �1 ≡ �1(E)

that still obeys the Leibniz condition expressed section-wise, by the relation

(3.10) D(α · s) = α · D(s) + s ⊗ ∂(α),

for any α ∈ A(U) and s ∈ E(U). Of course, D can also be construed as anatural transfor-
mation of the functors (: complete presheaves ≡ sheaves) appeared in (3.9). Thus, in other
words, the so-called A-connection as before is in effect our ability of providing a means to
effectuate a (tested/phenomenal) variation of the elements of A, whose we only know the
(“formal”) way they (: the variations) behave (Leibniz), so that we then concoct/construct,
“formally” (again), their world (: “space of living”:) �1, an A-module.
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Now, by following classical arguments in Homological Algebra extending/motivated by
our standard experience/practice in CDG, one can further develop the corresponding here-
with “differential-geometric” machinery pertaining thus to the present abstract framework
(: ADG); this has been already presented, in extenso and every detail in A. Mallios [15, 20].
Of course, the above depends on the particular choice of the “arithmetic” A, see for instance
A. Mallios–E.E. Rosinger [24, 25], or even A. Mallios [15]. So to supplement our informa-
tion, provided by (3.9) and thus better also elucidate (3.10), we have to mention that we are
given a C-(linear) morphism (see also (3.7)),

(3.11) ∂ : A −→ �1,

(: “flat” A-connection) satisfying the analogous (familiar) here “Leibniz condition”, for any
product, α · β , with α,β in A(U).

On the other hand, a fundamental moral based in effect on the classical theory (CDG) is
that:

(3.12)

any “differential-geometric” notion, that is needed at any particular stage of devel-
oping the machinery, at issue, should be given always in terms of A (: “sheaf of
coefficients”, viz. A ≡ “we”, as it were in effect), and in principle via sheaf mor-
phisms. It has thus always to be borne in mind here that, by assumption

(3.12.1) no “spatial” support/input is available,

something, that is actually the case in reality, as well; cf., for instance, A. Einstein
[5], in that:

(3.12.2)
“time and space are modes by which we think, not conditions in
which we live”.

See e.g. Yu.I. Manin [28, p. 71], or even,

(3.12.3)

“. . . continuous space-time. . . should be banned from theory as
asupplementary construction not justified by the essence of the
problem—a construction which corresponds to nothing real.

Cf. for example J. Stachel [37, p. 280].

[Emphasis above is ours]. Besides as already said we also remark, within the same context,
that;

(3.13) everything here is functorial/categorical, being sheaf-theoretic.

Furthermore, what is also of a particular importance is the fact that,

(3.14) everything should be, and actually is referred to A (: we), globally and locally.

Concerning the latter claim as above, that is “locally to A”,this is actually always the case
according to the very hypothesis of the same objects/notions involved in ADG (loc. cit.).
Furthermore one succeeds in that way to get

(3.15) everything (localizable/detectable) functorial with respect to A,

a fact of fundamental significance for the whole stage of the mechanism of ADG and of
its various applications (see e.g. Sect. 4 below); one can further construed the same as the
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analogue herewith of the classical principle of general covariance or even of the principle
of general relativity by simply taking into account (3.14). See also the applications referred
to in the next sections.

4 A Topos-Theoretic Variation

It is admittedly true that,

(4.1) “. . . the very notion of sheaf is . . . central to topos theory.”

See, for instance, S. MacLane–I. Moerdijk [13, p. 2]. As a result, the previous sheaf-theoretic
framework of ADG is therefore (and can indeed be) quite appropriate to adopt a topos-
theoretic reformulation provided we are still able to transfer to this more abstract setting,
hence to afford also the “dynamical part” of ADG. Note that the functorial/categorical char-
acter of the whole (abstract) “differential-geometric” machinery of ADG is just of para-
mount importance (: a fundamental guide) to the accomplishment of this task: So we first
remark that

(4.2)

it is a basic assumption, throughout the present discussion, as well as, of the whole
perspective of “Abstract (or else “Modern”) Differential Geometry” (: ADG), that,

(4.2.1)
the world around us is simply the result of certain particular
relations (: physical laws),

to paraphrase, or even post-anticipate herewith Leibniz; see also, for instance, A. Mallios
[21, (2.6)], or [16, (1.1), (1.4], together with [19, (1.1)]. The same aspect, as in (4.2.1) still
indicates the fundamental notion of a “field”; that is of a pair,

(4.3) (E,D),

alias, of a “Yang–Mills field”, in the terminology we adopt throughout ADG (cf. A. Mallios
[15, 20]). Therefore, that one also of an “observable” (: “field strength”); in this context, see
e.g. A. Mallios [21, (2.9)], E. Zafiris [41], along with (3.9) and (3.10) in the preceding.

On the other hand, we further remark that it is very convenient (still from a pedagogical
perspective) to look at a given

(4.4)

presheaf, as something of an appropriately organized “information”, while at the
corresponding “complete” presheaf, in the sense of Leray, viz. its associated sheaf,
as the looked for “full information”. So this can be supplied or, at least, could
be checked up on the basis of suitably (locally) defined “equivalent information”;
such an “equivalence” is here provided, according to the initially afforded “data of
information”, that is via the given presheaf.

The previous procedure of “completing a (locally) given information”, entailing thus the
way one can have a global information (: sections of a sheaf), by locally determining it
(: germs of sections, presheaf), can be related, of course, with the famous/familiar from
topos theory “plus construction”. The latter operation is thus a landing off of the former:
Indeed, the aforesaid process constitutes virtually the conversion of a(n arbitrary) presheaf
into a “localizable” one, viz. into a “functional”, so to say, presheaf, therefore, more flexible;
thus, the whole enterprise becomes again a “functionalization” of given arbitrary (abstract,
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“rigid”) data, hence, a conversion of the same into such of a (more naturally) localizable
type. At the same time, this can become susceptible of being, even globally perceivable, and
yet all this, in a much more general manner as it is a topos-theoretic framework.

The above represent the general idea of “sheafification” of given data (: (local, always)
“information”), either by referring to a standard arbitrary, in principle, topological space
(: classical case), or even to a site (viz. to a Grothendieck topology and the like, cf. be-
low). So in the second much more general case, a classical topology is replaced by the ele-
ments/objects of a given (“small”) category, while a classical open covering by a “sieve”
over an object of the small category at issue, where on the latter one can then define
a Grothendieck topology. Thus, one affords in principle, a much greater possibility of dealing
with supplied information which in the case, for instance, of relevant potential physical ap-
plications, e.g. quantum theory, may be associated with what one might call “observables”.
All the previous framework is still by the same definitions of a “varying (: relativistic) local-
izational” character (sheaf/topos theory), modulo always the relevant dynamics of the whole
edifice (hence, confronting thus with quantum field theory as well, see (3.1)).

4.1 Functorial (Topos-Theoretic) Dynamics

Our aim in the following discussion is to provide evidence of the manner that one can af-
ford a

(4.5)

“formal description/expression” of the way our basic information, as this is by
assumption represented/modelled by the C-algebra (sheaf) of “coefficients” A, or
even by any appropriate A-module E , is varying. In that context, one simply follows
the classical/standard axiomatization of the subject at issue, as given by Leibniz (be-
ing, of course, independently, vindicated, by Newton): So this is what we formally
call herewith an (A-)connection (: “dynamics”) in both a sheaf and topos–theoretic
framework.

So to this end, one has first to concoct the “space” on which the aforesaid variations live,
viz. in other words to define, “formally” again their world, say, �1, thus basically another
A-module. Equivalently, we summarize the above by saying that

(4.6)

to afford an A-connection (: “dynamics”) simply means that we are in the position
to participate the variation of objects we are interested in, knowing their domicile,
viz. the A-module �1 together with its relation(-functor) with A, see e.g. (3.11).

Yet, concerning the above procedure/function, one should remark that we are already facili-
tated/prepared by our abstract experience from ADG to cope with it, the same function, as
in (4.6) being entirely of a quite functorial nature, so that one can further look trustingly
after its topos-theoretic adaptation:

To start with, suppose we are given a category E together with a small full separating
(alias, generating) subcategory A. We denote this, by

(4.7) A ⊂
→
E .

In this connection, we further note that, by assumption, the previous “inclusion functor”
(4.7) is still full and faithful, so that the corresponding maps between “Hom-sets” of the
above two categories are, in effect, bijections. Hence, we know A by just knowing (the set
of) its objects (: arrows/“information” are the same, as in E); see also S. MacLane [12, p. 15].
On the other hand, since A is by hypothesis a separating subcategory of E , one concludes
based on the preceding terminology that (ibid., p. 123);
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(4.8) parallel arrows in E can be discerned through arrows in A.

More technically speaking this means that (see also [13, p. 576]),

(4.9)
arrows in A ending at the same object of E constitute, as we say, an “epimorphic
family”.

Thus, one can then consider (Giraud’s Theorem, see e.g. S. MacLane–I. Moerdijk [13,
p. 580f]) the so-called Grothendieck topology, say, J , that can be associated with such (epi-
morphic) families, as before, getting a site

(4.10) (A, J )

along with the category of sheaves on it, in the sense of topos-theory, denoted in the sequel
by

(4.11) Sh(A, J ).

Our aim now is to show the following category equivalence,

(4.12) E ∼= Sh(A, J ),

so that E becomes then a Grothendieck topos. See also (4.17) below along with the ensuing
discussion therein for a physical meaning of (4.12).

Now, what we wish further to show is that,

(4.13)

quantizing, in a topos-theoretic sense means, in effect, sheafifying à la
Grothendieck, so that quantum relativization (: a topos-theoretic quantum field the-
ory) could be attained by a,

(4.13.1) dynamical sheafification à la Grothendieck/Mallios.

In this context, one gets at the necessary topos-theoretic dynamics by defining it, following
ADG, on the generating subcategory A of E . This, for convenience, can be assumed to be a
small category of “classical arithmetics”, viz., in other words, the objects of which are thus
taken to be unital commutative C-algebras (of observables). Therefore, we actually consider
a small subcategory of the category of all unital commutative C-algebras. It is by means of
the previous small subcategory A that one endows the whole set-up, as in (4.12), with the
“spark”, we are looking for, of the relevant “dynamics” in E , according to the prototype of
ADG (and the characteristic examples therein; cf. Mallios–Rosinger, Mallios–Raptis, as in
the Refs. See also, for instance, A. Mallios [19, (4.3), §§4.(a), (b)]):

First, based on the very definitions and appropriate supplementary hypotheses, one con-
cludes that;

(4.14)

the objects of E are expressed, within a category equivalence, as colimits of the
functor category

(4.14.1) (Sets)A
op

,

that is of the category of set-valued presheaves on A; thus, one has the category
equivalence,

(4.14.2) Ob(E) ∼= colimOb((Sets)A
op

).
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In other words,

(4.15)

every object of, E , being a sheaf on the site (4.10) (i.e., for the Grothendieck topol-
ogy J ), is represented as a colimit of representable presheaves from the category
(4.14.1). Indeed, one remarks that,

(4.15.1)

every presheaf (: object of the category (4.14.1)) is the colimit of
representable presheaves: See e.g. [13, p. 41, Proposition 1 or p. 42,
Corollary 3].

The previous considerations are based on the fact that,

(4.16)

there is an “adjunction” between the topos (4.14.1) and the category E whose ob-
jects are, in effect (: modulo a categorical isomorphism), sheaves (cf. (4.14.2)) in
the same functor category (4.14.1).

Indeed, by an obvious abuse of notation concerning (4.14.2), one gets at the following use-
ful/informative relation,

(4.17) E = lim−→
(

(Sets)A
op)

,

modulo of course the aforesaid isomorphism (: category equivalence) as in (4.14.2). As
already mentioned, the presheaves (: objects of (4.14.1)) appeared in the second member
of (4.17) are, in effect, representable (cf. (4.15.1)) via the “injection/inclusion functor”
(4.7) that actually entails a ““Hom–tensor” adjunction”, alluded to already in (4.16). In
this respect, see also for instance S. MacLane-I. Moerdijk [13, p. 580, “converse part of
Giraud’s theorem”]. The above sheaf-theoretic representation of the elements of the given
(abstract) category E supplies also the way to define on E what one might denominate as,
“Grothendieck dynamics” on E , based on principles of ADG (cf. (4.13.1)). Indeed one relies
here, in view of the aforesaid adjunction functor (cf. (4.16)), on the possibility of expressing
the objects of E as colimits of the functor category (4.14.1) (loc.cit. along with (4.17)).

The above constitute essentially an abstract version of relevant recent and detailed work
of E. Zafiris in various topos-theoretic contexts for the modelling and interpretation of quan-
tum event [40, 42] and quantum observable structures [39, 41, 43] along sheaf–theoretic
lines, see also A. Mallios-E. Zafiris [27]: The concrete topos–theoretic scheme, developed
by Zafiris for that purpose, makes essential use of the notion of a categorical Grothendieck
topology, interpreted physically by means of generalized localization systems of quantum
event/observable algebras, consisting of epimorphic families of Boolean or general commu-
tative algebraic coverings. In this perspective, it is proved that quantum event/observable
algebras can be made isomorphic with structure sheaves of Boolean/commutative coordi-
natization coefficients for these localization systems. The main implications of this scheme
are related with the conclusion that globally non-commutative quantum structures are un-
derstood via functorial families of local Boolean/commutative reference frames (see, for
instance, (4.17)) pasted together along their overlaps. On the other hand, the sheaf-theoretic
representation of quantum structures according to the previous lines provides the basis for
the development of a topos-theoretic dynamics for quantum algebras from an algebraic
sheaf-cohomological point of view [27, 43] based mainly on ideas from ADG.

Analogous considerations, within a topos-theoretic setup, have been independently sup-
plied in recent work of I. Raptis [32, 33] pertaining mainly to a “finitary causal and quantal”
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perspective. In this connection, it is still of interest the ongoing current work of M. Papa-
triantafillou [31], referring to a categorical study of ADG that has also been employed in
the work of I. Raptis [33]. On the other hand, a categorical aspect of ADG has been already
independently considered in the work of E. Zafiris (ibid.).

Thus, as another result of our considerations in (4.14) and (4.17) one comes to the con-
clusion that:

(4.18)

our description of “quantum situations” may be presented in terms of non-
commutative issues (e.g., Heisenberg’s “matrix mechanics”), however, our calcu-
lations are always conducted, by means of commutative elements appertaining to
commutative environments (e.g.“algebras”).

The latter might still be compared with the classical “Bohr’s correspondence principle”.
Therefore, the above together with (4.14.2) leads us to the aspect that the aforesaid relation
might still be conceived as a topos–theoretic interpretation of “Bohr’s correspondence prin-
ciple”. However, see also relevant remarks in (1.18) in the preceding, as it concerns, in that
context, the general viewpoint of ADG.

Scholium 4.1 In connection with the preceding account and in view of the general perspec-
tive dominating ADG, it is also instructive to make the following remarks: So we note here
and again, that

(4.19)
the intervention of a topological space in the sheaf-theoretic formulation of ADG
is to be considered just as quite misleading.

Indeed, the contribution of “space” therein, as a support of the sheaves involved, is only
in “parameterizing”, so to say, the organization of the information encoded, through the
structure of the same sheaves: hence, this, by not affecting at all the intrinsic spaceless
character of ADG, in particular, as this concerns potential applications of the same theory
(cf., for instance, quantum gravity). As a matter of fact, as noted already throughout the
exposition of the theory, the “space”, in the classical sense of this term, is just the spin-off
of the “structural algebra-sheaves” involved at each particular moment (in this context, see
also the next section, along e.g. with A. Mallios [21, Sect. 5], or even A. Mallios [20, Vol. II;
Chap. I, Sect. 7]).

Now, a very characteristic/vindicating example of the above is, in effect, the aforemen-
tioned relevant work of E. Zafiris (see Refs.), in formulating the same theory (ADG), within
a topos-theoretic framework, “suited to the quantum regime” (cf. [43, Sect. 8, p. 350ff]);
here an appropriate Grothendieck topology is employed instead in place of a “measurement
topological space”, as in the standard case of a sheaf, indicating thus the functorial char-
acter of the esoteric mechanism/function of ADG. Of course, the same aspect is supplied
within the previous point of view, still, by the above axiomatic approach.

Yet, within a similar perspective as before, one may further consider the aforesaid al-
ready analogous recent topos-theoretic treatment of I. Raptis (see Refs.) referring to quan-
tum gravity problems, as well; its “dynamical” part is still rooted on ideas from ADG.

5 Schemes and ADG

In this final Section of the present treatise we want to highlight a certain potential inter-
mingling of elements of scheme theory with fundamental aspects of ADG, as related to
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topological algebra theory, cf. A. Mallios [14]. The same has been already exemplified in
connection with problems pertaining to a gauge-theoretic treatment of quantum gravity; see,
for instance, A. Mallios [20, Vol. II], or even [21, (5.5)–(5.9)]. So the pertinent notion here
that seems to fit in quite well with the aforesaid framework is that one of a topological alge-
bra scheme: [Having to do with the historical part of the present subject matter, I could say
that, in principle, I was always interested in that notion along with potential applications in
topological algebra theory: this due mainly, in particular, to my own interest in the latter the-
ory, yet in its sheaf-theoretic perspective. So it was actually a pleasant instance asked once
by I. Raptis when, in connection with our joint work on quantum gravity within the ADG
setup, about the above notion. Indeed, that same idea was, in effect, implicitly used already
in A. Mallios [20, Vol. II; Chap. IV], referring to “General Relativity as a Gauge Theory”;
the same aspect has been explicitly mentioned thereafter in A. Mallios [21], concerning the
real contribution within the latter context of the notion at issue]. For convenience, we give
below the fundamentals of the above terminology while for the rudiments of topological
algebra theory, we refer for instance to A. Mallios [14]. Thus suppose that we are given a
topological algebra space

(5.1) (E,X),

such that E is a topological algebra (ibid.), assumed to be unital and commutative over the
complexes C, while X is the spectrum (alias, Gel’fand space) of E. The same is by defini-
tion the set of (continuous) 1-dimensional representations of E, alias continuous characters
(: C-algebra morphisms) of E viewed as a subset of the “weak topological dual” of E,
E′

s (loc. cit.), hence, a (Hausdorff) topological space. The latter is still denoted (for histor-
ical reasons) by M(E) (ibid.). Now, applying a sheaf-theoretic approach to the standard
Gel’fand theory in Banach algebras, the above data yield X, as the base space of a (C)-
algebra sheaf of E, say E , viz. the so-called Gel’fand sheaf of E, see A. Mallios [17]. In that
manner, by analogy with what happens in nowadays Algebraic Geometry,

(5.2)

one can associate with a given topological algebra E a topological space X to-
gether with an algebra sheaf on it, say E ; the resulting pair

(5.2.1) (E,X)

is called a sheaf (alias, affine) topological algebra space associated with E.

The term “affine”, as before, will be made clear right below. Thus, it may happen that for
a suitable topological algebra E, as in (5.1), the latter is (isomorphic with) that one of the
global sections of its Gel’fand sheaf E (alias, “structure sheaf ” of the pair (5.2.1)), viz. one
has

(5.3) E ∼= 
(X,E) ≡ E(X),

within a (C-)algebra isomorphism. In that case we call E (for obvious reasons), a geometric
topological algebra. Now, one defines an

(5.4)

affine topological algebra scheme, as a pair “of type (5.2.1)”, modulo a suitable
categorical isomorphism, that is associated with a geometric topological algebra E.
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On the other hand, one naturally defines as a

(5.5)

topological algebra scheme, any pair as in (5.2.1), modulo an isomorphism (cf.
(5.4)), the same pair being locally (isomorphic to) an affine topological algebra
scheme.

We have thus here through the particular case in hand, another realization of the standard fact
as it were, for that matter that “schemes are built up from affine schemes”. On the other hand,
the advantage to employ topological algebra schemes is, according to concrete examples
(see A. Mallios [20, Vol. II]), the access, by the very definition of the same structure to an
appropriate topological-algebraic environment, locally. The latter is still possible to supply
the needed, as the case might be, differential-geometric mechanism to treat “dynamical”
issues in the sense of ADG, viz. without any surrogating “space” as it actually happens in the
latter theory. So one realizes still here the deeper characteristic of the geometry of schemes
in the sense that schemes are made from gluing together suitable “local pieces”, the “affine
schemes” as above; this in particular within the topological algebras framework considered
herewith. Yet, as for the time being, it might be said that the “geometry of schemes” (see
e.g. [7]), when in conjunction with ADG (and, occasionally, with topological algebra theory
in that context, loc. cit.), therefore, with potential applications in quantum gravity too (ibid.),
seems to be more flexible/(directly)effective in comparison with the analogous situation one
has through the “geometry” in terms of topos-theory.

Epilogue The axiomatic approach to the so-called quantum gravity as advocated by the
preceding, can virtually be associated, when of course appropriately adjusted, with the en-
tertainment of formulating any (physical) theory, pertaining to the variation of a given (alge-
braically) “organized information”. Hence one could also be able to provide (“differential”)
equations. Thus, in other words to conduct the necessary “calculations” thereat referring
to the laws that seem to condition the information we possess. So we ascertain here what
one might call “relational dynamics”, that is “dynamics” without the intervention of any
“space”. Indeed, “dynamics” is a matter of the functions/functors that intervene in a given
procedure, not of a “space”. In other words, we are concerned with “dynamics” referring
directly to the relations we are interested in. Yet, the “trick” herewith is to have the relations
at issue grouped algebraically together, so that one can then think, for instance, of an ap-
propriate presheaf, or even a scheme (see the preceding). This is still a sort of “dynamics”
that might be traced back to Leibniz, Kähler, or even to Feynman, concerning the classical
so-called “diagrams”-theory of the latter.

On the other hand, regarding the occasional “singularities” one might be confronted with
when applying a given “arithmetic” A, one should then look for another more appropriate
one A′ ⊇ A, that keeps the“mechanism” of the former “untouched” and moreover “absorbs”
the eventual “singularities” of A. In that context, a further potential application of ADG
seems very likely to be “Geometric Measure Theory”; see for example the recent account of
F. Morgan [29]. Yet, also A. Mallios [15, Vol. II], concerning the rôle herewith in connec-
tion with ADG, as before, of the so-called Lipschitz functions (loc. cit., p. 298); yet, see F.
Morgan [29, p. 1, along with p. 21, 3.2: Rademacher’s Theorem]. As a matter of fact, the
above can be construed as a very special case of the point of view disseminated already by
[24, 25].
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